Liquid-Liquid Equillbria for Ternary Systems Containing Hydrocarbons and Propylene Carbonate

M. C. Annesinl, F. Gironl, and L. Marrelll
Cattedra dl Principl dl Ingegneria Chimica, Università di Roma, 00184 Roma, Italy

I. KIkic*

Isthuto di Chimica Applicata e Industriale Università dl Trieste, 34127 Trieste, Italy

> Experimental data of llquid-liquid equillibrium at $20^{\circ} \mathrm{C}$ are reported for slx ternary systems containing propylene carbonate with n-hexane-benzene, n-hexane-ethylbenzene, \boldsymbol{n}-heptane-toluene, n-heptane-ethylbenzene, n-octane- 0 -xylene, and n-octane-ethylbenzene. The data are correlated by means of NRTL and UNIQUAC models and relative parameters are glven.

Iniroduction

In the literature alkylene carbonates are indicated as good solvents for the separation of sour gases and for the recovery of some classes of hydrocarbon compounds (1, 2). In spite of their physical properties and their potentlal application in industrial processes there are no extensive determinations of fluid-phase equillbrium data for systems containing propylene and ethylene carbonates. For these reasons we developed a research program dealing with measurements of vapor-liquid and liquid-liquid equilibria in systems containing propylene carbonate (PPC). Recently vapor-liquid equillbrium data for some binary systems of aromatic hydrocarbon-propylene carbonate were published (3). In this paper we report liquidliquid equilibria for ternary systems paraffin-aromatic hydro-carbon-propylene carbonate at $20^{\circ} \mathrm{C}$.

Experimental Section

The glass equilibrium cells employed were the same as reported by Kikic et al. (4). The ternary mixtures were equillbrated at the specified temperatures $\pm 0.1^{\circ} \mathrm{C}$ (water bath) by agitation with a magnetic stirrer for at least 2 h , followed by a settling period of 20 h . For each phase three samples were withdrawn for GLC analysis by means of a syringe: selectlve hoidup in the syringe was negligible. Particular attention was payed to the sampling operations: the syringe was heated to the same temperature of the equilibrium cells. The mixtures were analyzed by a thermal conductivity gas chromatograph (C. Erba Model ATc/t) equipped with a Shimadzu Cromatopac E-1A Integrator and using a 2-m column packed with Chromosorb W DMCS 100/120 mesh coated with SE 30.

The chromatographic factors have been determined from mixtures of known composition analyzed by GLC. The expected error on the mole fraction is 0.002 .
The chemicals were Fluka products and were used as purchased. The purty of the propylene carbonate was 99.5%; that of the hydrocarbons was 99.8%.

Results

The ternary systems studied were the following: n-hexane-benzene-propylene carbonate, n-hexane-ethylbenzene-propylene carbonate, n-heptane-toluene-propylene carbonate, n-heptane-ethylbenzene-propylene carbonate, n-octane-

Table I. Experimental Tie Lines (mol \%) for the System Propylene Carbonate-Benzene-n-Hexane at $20^{\circ} \mathrm{C}$

propylene carbonate		benzene	
phase 1	phase 2	phase 1	phase 2
79.59	0.83	16.02	16.21
78.76	1.82	16.84	27.01
70.83	2.05	26.01	36.80
61.56	2.42	31.75	44.20
58.95	2.56	33.78	45.16

Table II. Experimental Tie Lines (mol \%) for the System Propylene Carbonate-Ethylbenzene-n-Hexane

propylene carbonate		ethylbenzene		
	phase 1	phase 2	phase 1	phase 2
87.01	1.00	7.30	24.64	
85.11	1.37	8.26	30.12	
78.85	2.45	14.55	40.88	
76.62	3.66	17.10	47.68	
73.18	5.88	20.67	55.03	
51.30	17.43	39.64	59.65	

Table III. Experimental Tie Lines (mol \%) for the System Propylene Carbonate-Toluene-n-Heptane at $20^{\circ} \mathrm{C}$

propylene carbonate		toluene		
	phase 1	phase 2		phase 1
89.01	0.34	9.22	24.18	
86.84	0.59	10.86	26.38	
79.90	3.26		18.30	43.36
74.85	4.03	22.21	46.50	
70.00	4.55	26.44	51.62	

Table IV. Experimental Tie Lines (mol \%) for the System Propylene Carbonate-Ethylbenzene-n-Heptane

propylene carbonate			ethylbenzene	
	phase I	phase II		phase I
90.29	1.40		phase II	
91.76	1.65		7.72	26.04
86.48	2.43		11.09	29.75
84.80	3.01		12.67	35.98
83.09	4.76		14.28	45.90
78.47	8.27		19.45	54.94

Table V. Experimental Tie Lines (mol \%) for the System Propylene Carbonate-o-Xylene-n-Octane

propylene carbonate			o-xylene	
	phase I	phase II		phase I
90.73	0.85		phase II	
86.89	1.58		11.88	28.87
80.53	2.77		17.78	32.61
79.90	3.50		18.10	53.64
75.51	5.14		22.28	54.12
52.04	18.16		43.04	60.37
				66.46

ethylbenzene-propylene carbonate, and n-octane-o-xylenepropylene carbonate. All the ternary equilibria were studied at $20^{\circ} \mathrm{C}$ and for each system experimental measurements of conjugated phases were carried out. The results obtained are

Table VI. Experimental Tie Lines (mol \%) for the System Propylene Carbonate-Ethylbenzene-n-Octane at $20^{\circ} \mathrm{C}$

propylene carbonate	ethylbenzene	
phase I phase II	phase I	phase II
87.03 3.01	9.54	25.30
85.56	10.84	28.44
$79.77 \quad 4.15$	16.78	43.90
71.60 5.11	23.62	54.74
48.76	42.81	66.67
toluene		
n-heptane		popylene arbonate

Figure 1. Experimental tie lines at $20^{\circ} \mathrm{C}$ for the system n-heptane-toluene-propylene carbonate.
reported in Tables I-VI whereas Figure 1 shows, as an example, the data for the system n-heptane-toluene-propylene carbonate. For all the ternary systems a type 1 isotherm is observed since propylene carbonate is completely misclble with aromatic hydrocarbons.

The experimental data were correlated by means of NRTL (5) and UNIQUAC (6) models. When the NRTL model was used, the parameter α was fixed at the value 0.2. For the UNIQUAC model the r and q values for propylene carbonate were calculated starting from Bondi values (7) taking Into account the molecular structure of the compound; in particular the numerical values used are the following: $r=3.5843, q=$ 3.178. A computer program developed by Sorensen et al. (8) was used in the data reduction with the objective function defined in terms of concentrations.

In order to obtain the same numerical values for the parameters of the binary systems which are present in the different ternary systems the experimental data are filted all together. The values of the parameters obtained from the fitting with the NRTL and UNIQUAC models are reported in Tables VII and VIII, respectively. The results of the fitting are compared on the basis of the root mean square (rms) defined as

$$
\text { rms }=100\left[\sum_{k} \min _{\rightarrow}\left(x_{i k}(\text { exptl })-x_{i k}(\text { calcd })\right)^{2} / 6 M\right]^{1 / 2}
$$

$I=1,2,3 ; j=\mathrm{I}, \mathrm{II} ; k=1, \ldots, M(n$ tle lines); which takes into account both the shape of the binodal curve and the slope of the tie lines. In Table IX rms values are reported. Generally the NRTL equation gives rms values silghtly lower than those of the UNIQUAC equation but the difference is not significant. The correlation of the experimental data by means of the NRTL equation with $\alpha=0.3$ gave results very much like the ones

Table VII. NRTL Parameters (K) for the Binaries Investigated

binary	$A_{i j}$	$A_{j i}$
PPC-n-hexane	492.90	2039.8
PPC-n-heptane	823.39	1342.1
PPC-n-octane	604.34	957.04
PPC-benzene	-1748.8	418.46
PPC-toluene	-37.478	530.03
PPC-ethylbenzene	81.244	548.94
PPC-o-xylene	38.836	725.61
n-hexane-benzene	-2054.1	495.26
n-hexane-othylbenzene	872.45	-529.00
n-heptane-toluene	217.93	-200.36
n-heptane-ethylbenzene	778.30	-470.30
n-octane-ethylbenzene	-261.81	551.35
n-octane-o-xylene	-463.32	848.27

Table VIII. UNIQUAC Parameters (K) for the Binaries Investigated

binary	$A_{i j}$	$A_{j i}$
PPC- n-hexane	-26.165	910.35
PPC-n-heptane	38.453	454.01
PPC-n-octane	-1.5720	477.60
PPC-benzene	-147.35	80.623
PPC-toluene	-37.368	152.61
PPC-ethylbenzene	-19.261	184.92
PPC-o-xylene	270.09	-61.889
n-hexane-benzene	-140.13	-47.362
n-hexane-ethylbenzene	394.84	-222.69
n-heptane-toluene	-108.57	95.497
n-heptane-ethylbenzene	-219.17	337.54
n-octane-ethylbenzene	-42.191	82.063
n-octane-o-xylene	-56.452	65.530

Table IX. Rms Values Obtained with the NRTL and UNIQUAC Models

	rms	
	system	0.6594
NRTL	UNIQUAC	
PPC-benzene- n-hexane	0.7409	
PPC-ethylbenzene- n-hexane	0.5147	0.6681
PPC-toluene- n-heptane	0.5838	0.6423
PPC-ethylbenzene- n-heptane	0.6520	0.7253
PPC-ethylbenzene-n-octane	0.6322	0.7315
PPC-o-xylene- n-octane	0.6825	0.6112

obtained with $\alpha=0.2$ and previously reported. An analysis on artifictal systems (9) leads to the conclusion that an $\mathrm{rms}=0.8$ corresponds to an uncertainty in the mole fraction of 0.016 that is the expected error of the experimental determinations.

Regetry No. PC, 108-32-7; hexane, 110-54-3; heptane, 142-82-5; octane, 111-65-9; benzene, 71-43-2; toluene, 108-88-3; ethylbenzene, 100-41-4; 0-xylene, 85-47-6.

Lherature Ched

(1) Kohi, A. L.; Buckingham, P. A. Pet. Refiner 1980, 39, 193.
(2) Koppers, G. Brtish Patent $1138004,1968$.
(3) Annesini, M. C.; De Santis, R.; Kikic, I.; Marrelli, L. J. Chem. Eng. Data 1084, 29, 39.
(4) Kikk, I.; Aless, P.; Lapasin, R. Chem. Eng. J. 1879, 18, 39.
(5) Renon, H.; Prausnitz, J. M. AIChE J. 1988, 14, 135.
(6) Abrams, D.; Prausnitz, J. M. AIChE J. 1975, 21, 116.
(7) Bondl, A. "Physical Properties of Molecular Crystals, Liquids, and Glasses"; Wlley: Now York, 1968.
(8) Sorensen, J. M.; Magnussen, T.; Rasmussen, P.; Fredenslund, Aa. Fluld Phase Equillth. 1979, 3, 47.
(9) Kikic, I.; Alessi, P.; Lapasin, R.; Fermegtla, M. "Proceedings of the ISEC Conference, Denver, Sept 1983"; AIChE: Denver, CO, 1983; p 544.

Recelved for review Aprll 4, 1984. Accepted August 13, 1984. We thank Ministero della Pubbilica Istruzione (Italy) for financial support.

